W poprzednich dwóch częściach nauczyliśmy się obliczać, na podstawie wielkości charakteryzujących pojedyncze atomy (widmo elektronowe) lub cząsteczek (stałe siłowe wiązań), zmianę energii wewnętrznej w wyniku reakcji chemicznych. Obecna część jest poświęcona obliczaniu stałych równowag reakcji w fazie gazowej, co jest zagadnieniem trudniejszym. W tym celu najlpierw sformalizujemy zapis bilansu masy w reakcjach chemicznych a następnie sformułujemy warunek równowagi i z niego wyprowadzimy wyrażenia na stałe.
Rozważmy reakcję zachodządą według równania
A +
B +
=
C +
D +
gdzie A, B, , są substratami, C, D,
produktami reakcji a wielkości
są współczynnikami stechiometrycznymi.
Zmiany liczby cząstek w wyniku reakcji są ze sobą związane na mocy
prawa Daltona. Dlatego zmiana liczby cząstek produktu lub zmiana liczby cząstek
substratu ze znakiem minus, podzielone przez współczynniki stechiometryczne
stojące przy danym produkcie lub substracie są sobie równe. Tę wielkość
nazywamy postępem reakcji i oznaczamy symbolem
.
Mając postęp reakcji, możemy obliczyć zmianę liczby cząstek każdego substratu lub produktu.
Przykładowo, dla reakcji
H + I
= 2HI
mamy
,
,
a zatem
Warunkiem równowagi jest osiągnięcie przez układ minimum potencjału
termodynamicznego właściwego dla jego rodzaju, w tym przypadku energii
swobodnej. Minimum zostaje osiągnięte, jeżeli różniczka zupełna
energii swobodnej przyjmuje tożsamościowo wartość 0. Zatem dla układu
zawierającego substraty A, B, i produkty C, D,
reakcji
chemicznej
gdzie jest potencjałem chemicznym składnika
.
Ponieważ temperatura i objętość są stałe, i
, mamy
Wyrażając zmianę liczby cząstek każdego substratu i produktu przez zmianę postępu
reakcji dostajemy
Ponieważ powyższe wyrażenie musi być równe zeru dla każdego ,
mamy
Pozostaje wyprowadzić wyrażenia na potencjały chemiczne. Potencjał chemiczny składnika X jest równy
Z poprzednich części pamiętamy, że w przypadku układów cząsteczek lub atomów w fazie gazowej, sumę statystyczną można wyrazić następująco
Stąd
Po wstawieniu powyższego wyrażenia do wyrażenia na warunek równowagi
oraz przeniesienia wszystkich wyrażeń z na lewą a wszystkich
z
na prawą stronę dostajemy
Dzieląc obie strony powyższego równania przez , podnosząc
do ich
potęgi oraz definiując
gdzie można interpretować jako gęstość składnika
, dostajemy
gdzie jest wielkością zależną tylko od temperatury.
Jest to stała równowagi tej reakcji. Od stężeniowej stałej równowagi
różni ją tylko to, że zamiast stężeń reagentów wyrażonych w
molach na jednostę objętości mamy gęstości wyrażone w liczbach
cząstek reagentów na jednostkę objętości.
Z powyższego wyrażenia można otrzymać wyrażenia na stałą stężeniową
() i stałą ciśnieniową (
).
gdzie
Skorygowana o energię drgań zerowych energia dysocjacji cząsteczki sodu
wynosi
kcal/mol, jej charakterystyczna temperatura oscylacji
wynosi
K a charakterystyczna temperatura rotacji wynosi
K. Wzbudzone elektronowe stany atomu sodu i cząsteczki
disodu nie są osiągalne termicznie w rozpatrywanym zakresie temperatur.
2Na
Na
Jej stała ciśnieniowa wyraża się następującym wzorem
Jednostką tak zdefiniowanej stałej ciśnieniowej jest Pa.
Wielkości
i
wynoszą odpowiednio
Liczba symetrii cząsteczki disodu wynosi 2, ponieważ jest to cząsteczka
symetryczna.
Degeneracja podstawowego stanu elektronowego atomu sodu (
)
wynosi 2, ponieważ posiada on jeden niesparowany elektron.
Wstawiając powyższe wielkości do wzoru na ciśnieniową stałą równowagi
dostajemy
Wyrażamy teraz i
w kilogramach i obliczamy
.
W ostatnim równaniu zamiast wstawiliśmy
, ponieważ
wyrażono w przeliczeniu na 1 mol a nie na 1 cząsteczkę.
Po wstawieniu wartości liczbowych wszystkich wielkości oprócz temperatury,
wyrażenie na
przyjmuje postać.
Powyższe równanie wyraża stałą w Pa (albo m
/N). Aby
stałą wyrazić w atmosferach, trzeba wyrażenie pomnożyć przez
współczynnik przeliczeniowy z atmosfer na paskale (albo z paskali odwrotnych
na atmosfery odwrotne) równy 101325. Wtedy dostajemy
Po wstawieniu wartości temperatur z zadania otrzymujemy
,
,
,
, które dobrze się
zgadzają z wartościami z doświadczenia. Zgodność wartości
teoretycznych i doświadczalnych ilustruje poniższy wykres, na którym
przedstawiono teoretyczny wykres logarytmu naturalnego stałej ciśnieniowej
od odwrotności temperatury (przemnożonej przez 1000) (izochory van't Hoffa),
z naniesionymi
krzyżykami punktami doświadczalnymi. W badanym zakresie temperatur wykres
jest w bardzo dobrym przybliżeniu linią prostą. Dodatnie nachylenie prostej
wskazuje, że reakcja jest egzotermiczna.
Wyprowadzić wzór na stałą równowagi reakcji wymiany pomiędzy gazowym
wodorem cząsteczkowym (H lub
H
) i gazowym deuterem cząsteczkowym
(D
lub
D
).
H+D
2HD
Obliczyć wartości
stałej równowagi w temperaturach , 273, 298, 383 i
670 K z wartościami eksperymentalnymi równymi odpowiednio
,
,
,
i
(Rittenberg et al., J. Chem. Phys.,
2, 362, 1934). Charakterystyczna temperatura oscylacji cząsteczki wodoru
(
H
) wynosi
K.
Pierwszy ułamek stanowi wkład translacyjny, drugi rotacyjny, a pozostała część wkład oscylacyjny do wyrażenia na stałą równowagi.; Zauważmy, że zredukowały się wkłady pochodzące od energii dysocjacji (które są takie same dla każdej cząsteczki). Jednak z uwagi na różne temperatury charakterystyczne oscylacji, reakcja ma efekt energetyczny (patrz zadanie 5 z tematu 10).
Obliczymy teraz wkład translacyjny oraz rotacyjny. Można od razu zauważyć, że masy i masy zredukowane cząsteczek można tutaj wyrazić w dowolnych jednostkach, ponieważ ważne są tylko ich stosunki.
Stąd
ponieważ
,
a długość wiązania jest taka sama dla wszystkich cząsteczek.
Temperatury charakterystyczne oscylacji można wyrazić przez temperaturę
charakterystyczną oscylacji H. Mamy
Po wstawieniu powyższych wartości do wyrażenia na stałą równowagi dostajemy
Ostatnie przybliżenie jest uzasadnione tym, że charakterystyczne temperatury oscylacji wszystkich cząsteczek uczestniczących w reakcji są bardzo wysokie. Z równania na stałą równowagi wynika, że reakcja jest endotermiczna i że dla wysokich temperatur jej wartość powinna dążyć do 4,24. Można zauważyć, że dominującym wkładem do tej granicznej wartości jest iloczyn liczb symetrii cząsteczek substratów reakcji.
Po wstawieniu wartości temperatur dostajemy
,
,
,
i
. Z wyjątkiem wartości dla
K, wartości
obliczone dobrze zgadzają się z wartościami zmierzonymi. Gorszą zgodność
dla najniższej temperatury można łatwo wyjaśnić niższą dokładnością
przybliżenia wysokotemperaturowego. Rotacyjna temperatura charakterystyczna
wynosi 85,5 K, co jest wartością tylko nieco ponad 2 razy niższą
niż najniższa z temperatur.
Podobnie jak dla przykładu 1, poniżej przedstawiono wykres
z naniesionymi krzyżykami punktami doświadczalnymi. Ujemne nachylenie
prostej wskazuje, że reakcja jest endotermiczna.
Na podstawie przykładu 1 obliczyć stałą ciśnieniową równowagi reakcji
2K
K
w temperaturach 800 K i 1000 K.
Wartości doświadczalne stałej dla tych
temperatur wynoszą odpowiednio 0,673 i 0,123 atm (Ewing et al.,
J. Chem. Phys., 71, 473, 1977).
Charakterystyczna temperatura
oscylacji cząsteczki K
wynosi
K a jej charakterystyczna
temperatura rotacji wynosi
K. Skorygowana o energię
oscylacji zerowych energia dysocjacji cząsteczki dipotasu wynosi
kcal/mol.
Podobnie jak
w przypadku sodu, można zaniedbać wkłady wzbudzeń elektronowych atomu
potasu do sumy statystycznej.
Wyprowadzić wyrażenie na ciśnieniową stałą równowagi reakcji dysocjacji
jodu cząsteczkowego w fazie gazowej oraz obliczyć wartości tej stałej w
temperaturach K,
K,
K,
K i
K. Jod atomowy
znajduje się w stanie dubletowym (term
) a masa atomowa jodu wynosi
M = 127 g/mol. Skorygowana o oscylacje zerowe energia dysocjacji cząsteczki
jodu wynosi
kcal/mol, jej charakterystyczna temperatura
oscylacji wynosi
K a charakterystyczna temperatura rotacji
wynosi
K. Obliczone wartości stałej równowagi porównać
z wartościami eksperymentalnymi zebranymi (wraz z odchyleniami standardowymi)
w poniższej tabeli
(źródło: Perlman i Rollefson, J. Chem. Phys., 9, 362, 1941).
T [K] | 872 | 973 | 1073 | 1173 | 1273 |
|
|
|
0,01082 | 0,04805 | 0,1678 |
|
|
|
0,00012 | 0,00036 | 0,0017 |
Pokazać, że stała równowagi reakcji wymiany izotopowej
HCl + DBr
DCl + HBr
dąży w przybliżeniu do jedności w wystarczająco wysokich
temperaturach.
Charakterystyczne temperatury oscylacji HCl i HBr wynoszą odpowiednio
K i
K.
Wyprowadzić wzór na stałą równowagi reakcji wymiany izotopowej
N
+
N
2
N
N
w funkcji temperatury. Do wzoru wstawić wartości wszystkich wielkości oprócz
temperatury. Charakterystyczna temperatura oscylacji cząsteczki N
wynosi
K.
Obliczyć stałą równowagi w temperaturze
C
i
C. Następpnie, na podstawie podanych poniżej danych
z pracy Jorisa i Taylora (J. Chem. Phys., 7, 893, 1939), dotyczących
tej reakcji wymiany izotopowej na katalizatorze żelazowym w obecności
metyloaminy (tabela III w cytowanej pracy) obliczyć doświadczalne stałe
równowag i porównać z wartościami teoretycznymi.
Ilość/1000 jednostek |
|||
T [ |
Czas [h] | ||
465 | 2 | 100,5 | 51,50 |
17 | 125,8 | 39,00 | |
37 | 163,0 | 22,60 | |
60 | 194,0 | 14,00 | |
500 | 2 | 108,0 | 48,00 |
8 | 142,0 | 38,00 | |
21 | 184,0 | 20,00 | |
26 | 197,5 | 17,40 | |
35 | 202,0 | 13,40 | |
46 | 207,0 | 13,25 |
Dlaczego występują rozbieżności pomiędzy stałymi wyliczonymi z danych eksperymentalnych z zawartości poszczególnych składników otrzymanych dla najdłuższych czasów reakcji?